ISSN: 2157-7048
Dmitry Vladimirovich Gradov, Gerardo González, Marko Vauhkonen, Arto Laari and Tuomas Koiranen
Hydrodynamics of aerated slurry is studied experimentally and numerically using the example of thiosulphate leaching of gold concentrate. The studied milled concentrate has shear-thinning fluid rheology and it was imitated by water-based solutions of CMC. Presence of electrolytes, as in the case of the leaching slurry, has great influence on bubble size distribution. Primary phase flow is measured by Particle Image Velocimetry. Local gas hold-up in aerated CMC 50000 (0.15 w%) solution is measured by Electrical Impedance Tomography. Volumetric mass transfer is measured by dynamic method in different CMC solutions over a range of operational conditions in absence and presence of electrolytes. The experimental data was used in CFD modelling of the aerated slurry. Single phase hydrodynamics of shear-thinning fluid (CMC 50000 (0.15 w%)) have been modelled and validated against experimental data with reasonable agreement. Multiphase mixing of the thiosulphate slurry was modelled with the assumption of constant bubble size. The results of the simulations and measurements are presented and discussed.