音声学と聴覚学ジャーナル

音声学と聴覚学ジャーナル
オープンアクセス

ISSN: 2155-9899

概要

The Metabolic Prospective and Redox Regulation of Macrophage Polarization

Chao He and A Brent Carter

Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly summarize recent advances in macrophage polarization with special attention to their relevance to specific disease conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the development of targeted therapy for various diseases.

免責事項: この要約は人工知能ツールを使用して翻訳されたものであり、まだレビューまたは検証されていません。
Top